Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Technol Cancer Res Treat ; 23: 15330338241234788, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389426

RESUMO

Proton radiotherapy may be a compelling technical option for the treatment of breast cancer due to its unique physical property known as the "Bragg peak." This feature offers distinct advantages, promising superior dose conformity within the tumor area and reduced radiation exposure to surrounding healthy tissues, enhancing the potential for better treatment outcomes. However, proton therapy is accompanied by inherent challenges, primarily higher costs and limited accessibility when compared to well-developed photon irradiation. Thus, in clinical practice, it is important for radiation oncologists to carefully select patients before recommendation of proton therapy to ensure the transformation of dosimetric benefits into tangible clinical benefits. Yet, the optimal indications for proton therapy in breast cancer patients remain uncertain. While there is no widely recognized methodology for patient selection, numerous attempts have been made in this direction. In this review, we intended to present an inspiring summarization and discussion about the current practices and exploration on the approaches of this treatment decision-making process in terms of treatment-related side-effects, tumor control, and cost-efficiency, including the normal tissue complication probability (NTCP) model, the tumor control probability (TCP) model, genomic biomarkers, cost-effectiveness analyses (CEAs), and so on. Additionally, we conducted an evaluation of the eligibility criteria in ongoing randomized controlled trials and analyzed their reference value in patient selection. We evaluated the pros and cons of various potential patient selection approaches and proposed possible directions for further optimization and exploration. In summary, while proton therapy holds significant promise in breast cancer treatment, its integration into clinical practice calls for a thoughtful, evidence-driven strategy. By continuously refining the patient selection criteria, we can harness the full potential of proton radiotherapy while ensuring maximum benefit for breast cancer patients.


Assuntos
Neoplasias da Mama , Terapia com Prótons , Feminino , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Órgãos em Risco/efeitos da radiação , Seleção de Pacientes , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos
2.
Pest Manag Sci ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358029

RESUMO

BACKGROUND: Xanthomonas oryzae pv. oryzae (Xoo) is often considered one of the most destructive bacterial pathogens causing bacterial leaf blight (BLB), resulting in significant yield and cost losses in rice. In this study, a series of novel derivatives containing the isopropanolamine moiety linked to various substituted phenols and piperazines were designed, synthesized and screened. RESULTS: Antibacterial activity results showed that most compounds had good inhibitory effects on Xoo, among which compound W2 (EC50 = 2.74 µg mL-1 ) exhibited the most excellent inhibitory activity, and W2 also had a certain curative effect (35.89%) on rice compared to thiodiazole copper (TC) (21.57%). Scanning electron microscopy (SEM) results indicated that compound W2 could cause rupture of the Xoo cell membrane. Subsequently, proteomics and quantitative real-time polymerase chain reaction revealed that compound W2 affected the physiological processes of Xoo and may exert antibacterial activity by targeting the two-component system pathway. Interestingly, W2 upregulated Xoo's methyltransferase to impact on its pathogenicity. CONCLUSION: The present study offers a promising phenolic-piperazine-sopropanolamine compound as an innovative antibacterial strategy by specifically targeting the two-component system pathway and inducing upregulation of methyltransferase to effectively impact Xoo's pathogenicity. © 2024 Society of Chemical Industry.

3.
Infect Drug Resist ; 16: 7695-7705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144226

RESUMO

Introduction: Sepsis is one of the major diseases that seriously threatens human health, and its incidence and in-hospital morbidity and mortality rates remain high. Applying metagenomic next-generation sequencing (mNGS) technology to analyze the differences in pathogenic profiles and clinical factors in patients surviving and dying from sepsis combined with pulmonary infections provides diagnostic value and application for clinical purposes. Methods: Sixty-three BALF samples from patients with sepsis combined with pulmonary infection from Fuqing Hospital Affiliated to Fujian Medical University were collected, and all of them were tested by simultaneous mNGS and conventional microbial combined test (CMT) to compare the pathogenic profiles and clinical indices of patients who survived and died of sepsis combined with pulmonary infection and to further compare the diagnostic differences between mNGS and CMT in patients who survived and died of sepsis combined with pulmonary infection. We analyzed the diagnostic value of mNGS for sepsis combined with pulmonary infection. Results: A total of 141 strains of pathogens were isolated from 63 samples of patients with sepsis combined with pneumonia at suspected infection sites, Klebsiella pneumoniae, Acinetobacter baumannii, and Stenotrophomonas maltophilia are predominant, and higher ApacheII, LAC, P and PT are all risk factors affecting the death of septic patients. Conclusion: Applying the mNGS method to patients with sepsis combined with pneumonia can improve the positive detection rate of pathogenic microorganisms and focus on death-related risk factors such as pathogenic bacteria species as well as clinical laboratory indices, which can guide clinicians to take appropriate measures to treat patients with sepsis and reduce the occurrence of death.

4.
Oral Dis ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135895

RESUMO

OBJECTIVE: Midpalatal expansion (MPE) is routinely employed to treat transverse maxillary arch deficiency. Neutrophils are indispensable for recruiting bone marrow stromal cells (BMSCs) at the initial stage of bone regeneration. This study aimed to explore whether neutrophils participate in MPE and how they function during bone formation under mechanical stretching. MATERIALS AND METHODS: The presence and phenotype of neutrophils in the midpalatal suture during expansion were detected by flow cytometry and immunofluorescence staining. The possible mechanism of neutrophil recruitment and polarization was explored in vitro by exposing vascular endothelial cells (VECs) to cyclic tensile strain. RESULTS: The number of neutrophils in the distracted suture peaked on Day 3, and N2-type neutrophils significantly increased on Day 5 after force application. The depletion of circulatory neutrophils reduced bone volume by 43.6% after 7-day expansion. The stretched VECs recruited neutrophils via a CXCR2 mechanism in vitro, which then promoted BMSC osteogenic differentiation through the VEGFA/VEGFR2 axis. Consistently, these neutrophils showed higher expression of canonical N2 phenotype genes, including CD206 and Arg1. CONCLUSIONS: These results suggested that neutrophils participated in early bone formation during MPE. Based on these findings, we propose that stretched VECs recruited and polarized neutrophils, which, in turn, induced BMSC osteogenic differentiation.

5.
Eur J Pharmacol ; 961: 176167, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939994

RESUMO

BACKGROUND: Recent evidence revealed that glucose fluctuation might be more likely to cause arrhythmia than persistent hyperglycemia, whereas its mechanisms were elusive. We aimed to investigate the effect of glucose fluctuation on the occurrence of ventricular arrhythmia and its mechanism. METHODS: Streptozotocin (STZ) induced diabetic rats were randomized to five groups: the controlled blood glucose (C-STZ) group, uncontrolled blood glucose (U-STZ) group, fluctuated blood glucose (GF-STZ) group, and GF-STZ rats with 100 mg/kg Tempol (GF-STZ + Tempol) group or with 5 mg/kg KN93 (GF-STZ + KN93) group. Six weeks later, the susceptibility of ventricular arrhythmias and the electrophysiological dysfunctions of ventricular myocytes were evaluated using electrocardiogram and patch-clamp technique, respectively. The levels of reactive oxygen species (ROS) and oxidized CaMKII (ox-CaMKII) were determined by fluorescence assay and Western blot, respectively. Neonatal rat cardiomyocytes and H9C2 cells in vitro were used to explore the underlying mechanisms. RESULTS: The induction rate of ventricular arrhythmias was 10%, 55%, and 90% in C-STZ group, U-STZ group, and GF-STZ group, respectively (P < 0.05). The electrophysiological dysfunctions of ventricular myocytes, including action potential duration at repolarization of 90% (APD90), APD90 short-term variability (APD90-STV), late sodium current (INa-L), early after depolarization (EAD) and delayed after depolarizations (DAD), as well as the levels of ROS and ox-CaMKII, were significantly increased in GF-STZ group. In vivo and ex vivo, inhibition of ROS or ox-CaMKII reversed these effects. Inhibition of INa-L also significantly alleviated the electrophysiological dysfunctions. In vitro, inhibition of ROS increase could significantly decrease the ox-CaMKII activation induced by glucose fluctuations. CONCLUSIONS: Glucose fluctuations aggravated the INa-L induced ventricular arrhythmias though the activation of ROS/CaMKII pathway.


Assuntos
Diabetes Mellitus Experimental , Glucose , Animais , Ratos , Potenciais de Ação , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/metabolismo , Glicemia/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Miócitos Cardíacos , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo
6.
Sci Rep ; 13(1): 19440, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945630

RESUMO

Regional lymph node metastasis is an important predictor for survival outcome and an indicator for postoperative adjuvant chemotherapy in patients with colorectal cancer. Even with advances in adjuvant chemotherapeutic regimens, 5-year distant metastasis and survival rates are still unsatisfactory. Here, we evaluate the clinical significance of polymorphisms in receptors for HMGB1, which is the hallmark of chemotherapy-induced immunogenic cell death, in patients with stage II-III colon carcinoma (COAD). We found that high cytosolic HMGB1 is elicited in stage III COAD patients who received adjuvant chemotherapy. Patients with the TLR1-N248S polymorphism (rs4833095), which causes loss-of-function in HMGB1-mediated TLR1-TLR2 signaling, may influence the therapeutic efficacy of adjuvant chemotherapy, leading to a high risk of distant metastasis within 5 years [HR = 1.694, 95% CI = 1.063-2.698, p = 0.027], suggesting that TLR1-N248S is an independent prognostic factor for locally advanced colon carcinoma patients. We found that defective TLR1 impaired TLR1/2 signaling during dendritic cell (DC) maturation for the antitumor immune response under immunogenic chemotherapy oxaliplatin (OXP) treatment. Defective TLR1 on DCs impaired their maturation ability by HMGB1 and reduced the secretion of IFNγ from T cells to eradicate tumor cells in vitro. Moreover, systemic inhibition of TLR1/2 dramatically reduced the tumor-infiltrating immune cells by OXP treatment, leading to poor therapeutic response to OXP. In contrast, administration of a TLR1/2 agonist synergistically increased the benefit of OXP treatment and triggered a high density of tumor-infiltrating immune cells. We also observed that fewer tumor-infiltrating cytotoxic T lymphocytes were located within the tumor microenvironment in patients bearing the TLR1-N248S polymorphism. Overall, our results suggest that dysfunctional TLR1 may reduce the therapeutic response to adjuvant chemotherapy by impairing HMGB1-mediated DC maturation and attenuating the antitumor immune response in locally advanced colon carcinoma patients.


Assuntos
Carcinoma , Neoplasias do Colo , Proteína HMGB1 , Humanos , Receptor 1 Toll-Like/genética , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Oxaliplatina/uso terapêutico , Neoplasias do Colo/patologia , Microambiente Tumoral
7.
J Am Chem Soc ; 145(49): 26915-26924, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38019775

RESUMO

Exploring bidirectional CO2/HCO2- catalysis holds significant potential in constructing integrated (photo)electrochemical formate fuel cells for energy storage and applications. Herein, we report selective CO2/HCO2- electrochemical interconversion by exploiting the flexible coordination modes and rich redox properties of a versatile iron-thiolate platform, Cp*Fe(II)L (L = 1,2-Ph2PC6H4S-). Upon oxidation, this iron complex undergoes formate binding to generate a diferric formate complex, [(L-)2Fe(III)(µ-HCO2)Fe(III)]+, which exhibits remarkable electrocatalytic performance for the HCO2--to-CO2 transformation with a maximum turnover frequency (TOFmax) ∼103 s-1 and a Faraday efficiency (FE) ∼92(±4)%. Conversely, this iron system also allows for reduction at -1.85 V (vs Fc+/0) and exhibits an impressive FE ∼93 (±3)% for the CO2-to-HCO2- conversion. Mechanism studies revealed that the HCO2--to-CO2 electrocatalysis passes through dicationic [(L2)-•Fe(III)(µ-HCO2)Fe(III)]2+ generated by unconventional oxidation of the diferric formate species taking place at ligand L, while the CO2-to-HCO2- reduction involves a critical intermediate of [Fe(II)-H]- that was independently synthesized and structurally characterized.

8.
Sci Bull (Beijing) ; 68(21): 2607-2619, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37798178

RESUMO

Epstein-Barr virus (EBV) is the oncogenic driver of multiple cancers. However, the underlying mechanism of virus-cancer immunological interaction during disease pathogenesis remains largely elusive. Here we reported the first comprehensive proteogenomic characterization of natural killer/T-cell lymphoma (NKTCL), a representative disease model to study EBV-induced lymphomagenesis, incorporating genomic, transcriptomic, and in-depth proteomic data. Our multi-omics analysis of NKTCL revealed that EBV gene pattern correlated with immune-related oncogenic signaling. Single-cell transcriptome further delineated the tumor microenvironment as immune-inflamed, -deficient, and -desert phenotypes, in association with different setpoints of cancer-immunity cycle. EBV interacted with transcriptional factors to provoke GPCR interactome (GPCRome) reprogramming. Enhanced expression of chemokine receptor-1 (CCR1) on malignant and immunosuppressive cells modulated virus-cancer interaction on microenvironment. Therapeutic targeting CCR1 showed promising efficacy with EBV eradication, T-cell activation, and lymphoma cell killing in NKTCL organoid. Collectively, our study identified a previously unknown GPCR-mediated malignant progression and translated sensors of viral molecules into EBV-specific anti-cancer therapeutics.


Assuntos
Infecções por Vírus Epstein-Barr , Linfoma , Células T Matadoras Naturais , Humanos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Proteômica , Linfoma/complicações , Células T Matadoras Naturais/patologia , Microambiente Tumoral/genética
9.
mBio ; 14(5): e0211023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796013

RESUMO

IMPORTANCE: Respiratory syncytial virus (RSV) is the leading etiological agent of lower respiratory tract illness. However, efficacious vaccines or antiviral drugs for treating RSV infections are currently not available. Indeed, RSV depends on host cells to provide energy needed to produce progeny virions. Glycolysis is a series of oxidative reactions used to metabolize glucose and provide energy to host cells. Therefore, glycolysis may be helpful for RSV infection. In this study, we show that RSV increases glycolysis by inducing the stabilization, transcription, translation, and activation of hypoxia-inducible factor (HIF)-1α in infected cells, which is important for the production of progeny RSV virions. This study contributes to understanding the molecular mechanism by which HIF-1α-mediated glycolysis controls RSV infection and reveals an effective target for the development of highly efficient anti-RSV drugs.


Assuntos
Doenças Transmissíveis , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Vírus Sincicial Respiratório Humano/genética , Glicólise
10.
Nutrients ; 15(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37836576

RESUMO

BACKGROUND: Recently, there has been a growing focus on the prognostic significance of nutrition-related biomarkers. We attempted to explore the association between a novel albumin-related nutrition marker called "lymphocyte × albumin (LA)" and disease-free survival (DFS) in breast cancer patients undergoing neoadjuvant chemotherapy (NAC). METHODS: In total, 711 non-metastatic breast cancer patients who underwent NAC at two medical centers were retrospectively analyzed. We performed least absolute shrinkage and selection operator (LASSO) Cox regression analysis as well as multivariate Cox regression analyses to identify the variables associated with DFS and to establish a predictive nomogram. RESULTS: The nomogram incorporated four variables based on the multivariate analysis of DFS in the training cohort: LA, ypN stage, ypT stage, and hormone receptor status. In comparison with the traditional TNM staging system, the nomogram demonstrated superior discrimination, calibration ability, and clinical usefulness in both the training set and internal and external validation sets. Furthermore, patients stratified into different risk groups resulted in significant differences in DFS. CONCLUSIONS: LA is an independent prognostic biomarker, and LA-based prognostic nomogram offers a more precise assessment of DFS for breast cancer patients treated with NAC, potentially serving as a valuable tool for personalized prognostic predictions.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Humanos , Feminino , Terapia Neoadjuvante/métodos , Neoplasias da Mama/patologia , Estudos de Coortes , Estudos Retrospectivos , Prognóstico , Biomarcadores , Albuminas/uso terapêutico
12.
Front Oncol ; 13: 1160802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664027

RESUMO

Purpose: The aim of this study was to explore how a multidisciplinary team (MDT) affects patterns of local or systematic treatment. Methods: We retrospectively reviewed the data of consecutive patients in the breast cancer with brain metastases (BCBM) database at our institution from January 2011 to April 2021. The patients were divided into an MDT group and a non-MDT group. Results: A total of 208 patients were analyzed, including 104 each in the MDT and non-MDT groups. After MDT, 56 patients (53.8%) were found to have intracranial "diagnosis upgrade". In the matched population, patients in the MDT group recorded a higher proportion of meningeal metastases (14.4% vs. 4.8%, p = 0.02), symptomatic tumor progression (11.5% vs. 5.8%, p = 0.04), and an increased number of occurrences of brain metastases (BM) progression (p < 0.05). Attending MDT was an independent factor associated with ≥2 courses of intracranial radiotherapy (RT) [odds ratio (OR) 5.4, 95% confidence interval (CI): 2.7-10.9, p < 0.001], novel RT technique use (7.0, 95% CI 3.5-14.0, p < 0.001), and prospective clinical research (OR 5.7, 95% CI 2.4-13.4, p < 0.001). Conclusion: Patients with complex conditions are often referred for MDT discussions. An MDT may improve the qualities of intracranial RT and systemic therapy, resulting in benefits of overall survival for BC patients after BM. This encourages the idea that treatment recommendations for patients with BMBC should be discussed within an MDT.

13.
Front Nutr ; 10: 1162280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545573

RESUMO

Background: Recent studies indicate that the novel lymphocyte-C-reactive protein ratio (LCR) is strongly associated with the survival of various tumors, but its prognostic value in nasopharyngeal carcinoma (NPC) is understudied. This study aimed to explore the relationship between LCR and overall survival (OS) in NPC and develop a predictive model. Methods: A total of 841 NPC patients who received concurrent chemoradiotherapy (CCRT) between January 2010 and December 2014 were retrospectively enrolled and randomly divided into a training cohort (n = 589) and a validation cohort (n = 252), and 122 patients between January 2015 and March 2015 were included as an additional validation cohort. Univariate and multivariate Cox analyses were performed to identify variables associated with OS and construct a predictive nomogram. The predictive accuracy of the nomogram was evaluated and independently validated. Results: The LCR score differentiated NPC patients into two groups with distinct prognoses (HR = 0.53; 95% CI: 0.32-0.89, P = 0.014). Multivariate analysis showed that age, T stage, N stage, EBV-DNA status, and LCR score were independently associated with OS, and a predictive nomogram was developed. The nomogram had a good performance for the prediction of OS [C-index = 0.770 (95% CI: 0.675-0.864)]. and outperformed the traditional staging system [C-index = 0.589 (95% CI: 0.385-0.792)]. The results were internally and additionally validated using independent cohorts. Conclusion: The pretreatment LCR could independently predict the overall survival in NPC patients. A novel LCR-based prognostic model of an easy-to-use nomogram was established, and it outperformed the conventional staging system in terms of predictive power. Further external verification remains necessary.

14.
Angew Chem Int Ed Engl ; 62(37): e202305450, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37345905

RESUMO

Catalytic asymmetric construction of chiral indole-fused rings has become an important issue in the chemical community because of the significance of such scaffolds. In this work, we have accomplished the first catalytic asymmetric (4+2) and (4+3) cycloadditions of 2,3-indolyldimethanols by using indoles and 2-naphthols as suitable reaction partners under the catalysis of chiral phosphoric acids, constructing enantioenriched indole-fused six-membered and seven-membered rings in high yields with excellent enantioselectivities. In addition, this approach is used to realize the first enantioselective construction of challenging tetrahydroindolocarbazole scaffolds, which are found to show promising anticancer activity. More importantly, theoretical calculations of the reaction pathways and activation mode offer an in-depth understanding of this class of indolylmethanols. This work not only settles the challenges in realizing catalytic asymmetric cycloadditions of indolyldimethanols but also provides a powerful strategy for the construction of enantioenriched indole-fused rings.

15.
Inorg Chem ; 62(24): 9400-9417, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37279181

RESUMO

Iron tetraphenylporphyrin complex modified with four trimethylammonium groups (Fe-p-TMA) is found to be capable of catalyzing the eight-electron eight-proton reduction of CO2 to CH4 photochemically in acetonitrile. In the present work, density functional theory (DFT) calculations have been performed to investigate the reaction mechanism and to rationalize the product selectivity. Our results revealed that the initial catalyst Fe-p-TMA ([Cl-Fe(III)-LR4]4+, where L = tetraphenylporphyrin ligand with a total charge of -2, and R4 = four trimethylammonium groups with a total charge of +4) undergoes three reduction steps, accompanied by the dissociation of the chloride ion to form [Fe(II)-L••2-R4]2+. [Fe(II)-L••2-R4]2+, bearing a Fe(II) center ferromagnetically coupled with a tetraphenylporphyrin diradical, performs a nucleophilic attack on CO2 to produce the 1η-CO2 adduct [CO2•--Fe(II)-L•-R4]2+. Two intermolecular proton transfer steps then take place at the CO2 moiety of [CO2•--Fe(II)-L•-R4]2+, resulting in the cleavage of the C-O bond and the formation of the critical intermediate [Fe(II)-CO]4+ after releasing a water molecule. Subsequently, [Fe(II)-CO]4+ accepts three electrons and one proton to generate [CHO-Fe(II)-L•-R4]2+, which finally undergoes a successive four-electron-five-proton reduction to produce methane without forming formaldehyde, methanol, or formate. Notably, the redox non-innocent tetraphenylporphyrin ligand was found to play an important role in CO2 reduction since it could accept and transfer electron(s) during catalysis, thus keeping the ferrous ion at a relatively high oxidation state. Hydrogen evolution reaction via the formation of Fe-hydride ([Fe(II)-H]3+) turns out to endure a higher total barrier than the CO2 reduction reaction, therefore providing a reasonable explanation for the origin of the product selectivity.

16.
Front Neurol ; 14: 1165020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305757

RESUMO

Objective: Traumatic brain injury (TBI) leads to death and disability. This study developed an effective prognostic nomogram for assessing the risk factors for TBI mortality. Method: Data were extracted from an online database called "Multiparameter Intelligent Monitoring in Intensive Care IV" (MIMIC IV). The ICD code obtained data from 2,551 TBI persons (first ICU stay, >18 years old) from this database. R divided samples into 7:3 training and testing cohorts. The univariate analysis determined whether the two cohorts differed statistically in baseline data. This research used forward stepwise logistic regression after independent prognostic factors for these TBI patients. The optimal variables were selected for the model by the optimal subset method. The optimal feature subsets in pattern recognition improved the model prediction, and the minimum BIC forest of the high-dimensional mixed graph model achieved a better prediction effect. A nomogram-labeled TBI-IHM model containing these risk factors was made by nomology in State software. Least Squares OLS was used to build linear models, and then the Receiver Operating Characteristic (ROC) curve was plotted. The TBI-IHM nomogram model's validity was determined by receiver operating characteristic curves (AUCs), correction curve, Hosmer-Lemeshow test, integrated discrimination improvement (IDI), net reclassification improvement (NRI), and decision-curve analysis (DCA). Result: The eight features with a minimal BIC model were mannitol use, mechanical ventilation, vasopressor use, international normalized ratio, urea nitrogen, respiratory rate, and cerebrovascular disease. The proposed nomogram (TBI-IHM model) was the best mortality prediction model, with better discrimination and superior model fitting for severely ill TBI patients staying in ICU. The model's receiver operating characteristic curve (ROC) was the best compared to the seven other models. It might be clinically helpful for doctors to make clinical decisions. Conclusion: The proposed nomogram (TBI-IHM model) has significant potential as a clinical utility in predicting mortality in TBI patients.

17.
Cancer Med ; 12(12): 13309-13318, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148548

RESUMO

BACKGROUND AND OBJECTIVES: Neoadjuvant chemotherapy (nCT) appears in a few clinical studies as an alternative to neoadjuvant chemoradiation (nCRT) in selected patients with locally advanced rectal cancer (LARC). We aimed to compare the clinical outcomes of nCT with or without nCRT in patients with LARC and to identify patients who may be suitable for nCT alone. MATERIALS AND METHODS: A total of 155 patients with LARC who received neoadjuvant treatment (NT) were retrospectively analysed from January 2016 to June 2021. The patients were divided into two groups: nCRT (n = 101) and nCT (n = 54). More patients with locally advanced disease (cT4, cN+ and magnetic resonance imaging-detected mesorectal fascia [mrMRF] positive [+]) were found in the nCRT group. Patients in the nCRT group received a dose of 50 Gy/25 Fx irradiation with concurrent capecitabine, and the median number of nCT cycles was two. In the nCT group, the median number of cycles was four. RESULTS: The median follow-up duration was 30 months. The pathologic complete response (pCR) rate in the nCRT group was significantly higher than that in the nCT group (17.5% vs. 5.6%, p = 0.047). A significant difference was observed in the locoregional recurrence rate (LRR); 6.9% in the nCRT group and 16.7% in the nCT group (p = 0.011). Among patients with initial mrMRF (+) status, the LRR in the nCRT group was significantly lower than that in the nCT group (6.1% vs. 20%, p = 0.007), but not in patients with initial mrMRF negative (-) (10.5% in each group, p = 0.647). Compared with the nCT group, a lower LRR was observed in patients in the nCRT group with initial mrMRF (+) converted to mrMRF (-) after NT (5.3% vs. 23%, p = 0.009). No significant difference was observed between the two groups regarding acute toxicity and overall and progression-free survivals. Multivariate analysis showed that nCRT and ypN stage were independent prognostic factors for the development of LRR. CONCLUSION: Patients with initial mrMRF (-) may be suitable for nCT alone. However, patients with initial mrMRF (+) converted to mrMRF (-) after nCT are still at high risk of LRR, and radiotherapy is recommended. Prospective studies are required to confirm these findings.


Assuntos
Terapia Neoadjuvante , Seleção de Pacientes , Neoplasias Retais , Terapia Neoadjuvante/efeitos adversos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/terapia , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Intervalo Livre de Progressão , Prognóstico , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Leucopenia/etiologia , Radiodermatite/etiologia
18.
BMC Genomics ; 24(1): 273, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208602

RESUMO

BACKGROUND: Previous studies have shown that secondary metabolites of Bacillus subtilis strain Z15 (BS-Z15) are effective in treating fungal infections in mice. To evaluate whether it also modulates immune function in mice to exert antifungal effects, we investigated the effect of BS-Z15 secondary metabolites on both the innate and adaptive immune functions of mice, and explored its molecular mechanism through blood transcriptome analysis. RESULTS: The study showed that BS-Z15 secondary metabolites increased the number of monocytes and platelets in the blood, improved natural killer (NK) cell activity and phagocytosis of monocytes-macrophages, increased the conversion rate of lymphocytes in the spleen, the number of T lymphocytes and the antibody production capacity of mice, and increased the levels of Interferon gamma (IFN-γ), Interleukin-6 (IL-6), Immunoglobulin G (IgG) and Immunoglobulin M (IgM) in plasma. The blood transcriptome analysis revealed 608 differentially expressed genes following treatment with BS-Z15 secondary metabolites, all of which were significantly enriched in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms for immune-related entries and pathways such as Tumor Necrosis Factor (TNF) and Toll-like receptor (TLR) signaling pathways, and upregulated expression levels of immune-related genes such as Complement 1q B chain (C1qb), Complement 4B (C4b), Tetracyclin Resistant (TCR) and Regulatory Factor X, 5 (RFX5). CONCLUSIONS: BS-Z15 secondary metabolites were shown to enhance innate and adaptive immune function in mice, laying a theoretical foundation for its development and application in the field of immunity.


Assuntos
Bacillus subtilis , Células Matadoras Naturais , Animais , Camundongos , Células Matadoras Naturais/metabolismo , Linfócitos T/metabolismo , Interferon gama , Fagocitose
19.
Front Physiol ; 14: 1125340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215180

RESUMO

Background: The effects of conduction system pacing (CSP) compared with conventional biventricular pacing (BVP) on heart function in patients with heart failure remain elusive. Methods: PubMed, Embase, Cochrane's Library and Web of science databases were searched up to 1 October 2022 for pertinent controlled studies. Random or fixed-effect model were used to synthesize the clinical outcomes. Subgroup analysis was performed to screen the potential confounding factors. Results: Fifteen studies including 1,347 patients were enrolled. Compared with BVP, CSP was significantly associated with shortened QRS duration [WMD -22.51 ms; p = 0.000], improved left ventricular ejection fraction [WMD 5.53%; p = 0.000], improved NYHA grade [WMD -0.42; p = 0.000], higher response rate and lower heart failure rehospitalization rate. CSP resulted in better clinical outcomes in higher male proportion group than lower one compared with BVP. No significant differences of clinical outcomes were observed between left bundle branch area pacing (LBBaP) and his bundle pacing (HBP) except the pacing threshold. The pacing threshold of LBBaP was significantly lower than those in BVP and HBP. Conclusion: This study suggests that CSP might be superior to conventional BVP for HF patients. In a higher male proportion group, CSP may be associated with more benefits than BVP. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022355991; Identifier: CRD42022355991.

20.
J Hazard Mater ; 455: 131607, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37182466

RESUMO

The behaviors of antimony (Sb) and arsenic (As) in plants are different, though they are chemical analogs. Here, we examined the Sb uptake and speciation in two As-hyperaccumulators P. vittata and P. cretica, which were exposed to 0.5 or 5 mg L-1 antimonate (SbV) or antimonite (SbIII) under hydroponics for 7 d. Both plants grew better under Sb exposure, especially for P. cretica. The biomass of P. cretica roots increased by 29-46% after exposing to SbV, possibly due to increased S. Further, the Sb content in P. vittata was 17-93% greater than P. cretica, with 2-3 times more SbIII than SbV in both plants and > 92% Sb being concentrated in the roots, showing limited translocation. Under SbV exposure, SbV was dominant in P. vittata roots at 86-94%, while SbIII was predominant in P. cretica roots at 36-95%. P. cretica's stronger reducing ability than P. vittata may be due to arsenate reductases HAC1 and ACR2, which were upregulated in both plants. In short, while effective in Sb accumulation, it is mostly concentrated in the roots for both plants. The differences in their accumulation and speciation may help to better understand Sb behaviors in other plants.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Arsênio/toxicidade , Arsênio/análise , Antimônio , Poluentes do Solo/análise , Raízes de Plantas/química , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...